Abstract

We present a study on the formation of One-Dimensional Photonic Band Gap structure with electrochemical etching of p+-type Si (100) with resistivity 0.01 Ω.cm in HF/ CH3COOH/H2O solution. The process can be precisely controlled by varying the experimental parameter (current density, etching time, number of porous layer). The elaborated structures consisting of porous layers with periodically modulated current densities provide an opportunity to create multilayer structures: Distribution Bragg Reflector’s (DBR), Optical Micro-Cavities (OMC).To obtain a periodic porous silicon multilayer structure we switched the current density between low (7–14 mA/cm2) and high (50–100 mA/cm2) values. Reflection spectra measured from DBR and OMC are acquired by spectroscopy Cary 500. Morphological analysis of porous silicon surface was carried out by scanning electron microscope. The reflectivity for DBR shows an increase reflectivity from 55% to 95%, when the periodic layers number increases from 20 to 40. It is clearly shown that the changing of the experimental parameter induces a shift of the reflectivity of OMC from 2030 nm to 1265 nm. Moreover, it is noted that the reflectivity increases from 65% for the 1st OMC to 70% for the second one.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call