Abstract

Our research focuses on learning about causal relationships between events when a candidate cause is a compound integrated by several individual causes. In two experiments, we compared the predictions of the Associative Models of Rescorla and Wagner (1972) and Pearce (1994), the Inductive Models of Cheng and Novick (1992) and Novick and Cheng (2004). In contrast with previous research about this topic, in these experiments, a causality judgments task was used in which the information about the presence/absence of the causes and the effect was presented through small samples of cases. Our results showed that the learning mechanisms involved in compound cue processing could be associative in origin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.