Abstract

ENSO is an important climate phenomenon that often causes widespread climate anomalies and triggers various meteorological disasters. Accurately predicting the ENSO variation trend is of great significance for global ecosystems and socio-economic aspects. In scientific practice, researchers predominantly employ associated indices, such as Niño 3.4, to quantitatively characterize the onset, intensity, duration, and type of ENSO events. In this study, we propose the STL-TCN model, which combines seasonal-trend decomposition using locally weighted scatterplot smoothing (LOESS) (STL) and temporal convolutional networks (TCN). This method uses STL to decompose the original time series into trend, seasonal, and residual components. Each subsequence is then individually predicted by different TCN models for multi-step forecasting, and the predictions from all models are combined to obtain the final result. During the verification period from 1992 to 2022, the STL-TCN model effectively captures index features and improves the accuracy of multi-step forecasting. In historical event simulation experiments, the model demonstrates advantages in capturing the trend and peak intensity of ENSO events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.