Abstract

In this study, the Axial Flux Synchronous Reluctance Motor (AF-SynRM) with multiple barriers in its rotor is designed and it is aimed to compare the performance with the Axial Flux Induction Motor (AF-IM) with the same stator structure and dimensions. For an equal comparison, the motor dimensions and stator structure are chosen the same, only the rotor is changed. In the preliminary study of the designs, machine dimensions are calculated analytically and modeled with the 3D Finite Element Method (FEM). To optimize the saliency ratio, which is the most important factor affecting AF-SynRM performance, Genetic Algorithm (GA) based optimization is performed and the rotor geometry is changed. Thus, a suitable model is created for comparison. Torque, efficiency, input power, power factor, total loses and torque per amper parameters are analyzed. With the proposed comparison method, AF-SynRM obtains higher efficiency, power, torque per ampere and lower losses than AF-IM at the same power rating (2.2 kW). The AF-SynRM rotor will be a good alternative in applications where high efficiency and torque are required, with low cost-maintenance costs due to the absence of a squirrel cage and its structure without magnet.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call