Abstract

Suppose $X$ is a hyperelliptic curve of genus $g$ defined over an algebraically closed field $k$ of characteristic $p=2$. We prove that the de Rham cohomology of $X$ decomposes into pieces indexed by the branch points of the hyperelliptic cover. This allows us to compute the isomorphism class of the $2$-torsion group scheme $J_X[2]$ of the Jacobian of $X$ in terms of the Ekedahl-Oort type. The interesting feature is that $J_X[2]$ depends only on some discrete invariants of $X$, namely, on the ramification invariants associated with the branch points. We give a complete classification of the group schemes which occur as the $2$-torsion group schemes of Jacobians of hyperelliptic $k$-curves of arbitrary genus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.