Abstract

AbstractThe elevated rim in simple craters results from the structural uplift of preimpact target rocks and the deposition of a coherent proximal ejecta blanket at the outer edge of the transient cavity. Given the considerable, widening of the transient cavity during crater modification and ejecta thickness distributions, the cause of elevated crater rims in complex craters is less obvious. The thick, proximal ejecta in complex impact craters is deposited well inside the final crater rim and target thickening should rapidly diminish with increasing distance from the transient cavity rim. Our study of 10 complex Martian impact craters ranging from 8.2 to 53.0 km in diameter demonstrates that the mean structural rim uplift at the final crater rim makes 81% of the total rim elevation, while the mean ejecta thickness contributes 19%. Thus, the structural rim uplift seems to be the dominant factor to build up the total amount of the raised crater rim of complex craters. To measure the widening of the transient cavity during modification and the distance between the rim of the final crater and that of the transient cavity, we constructed balanced cross section restorations to estimate the transient cavity of nine complex Martian impact craters. The final crater radii are ~1.38–1.87 times the transient cavity radii. We propose that target uplift at the position of the final crater rim was established during the excavation stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call