Abstract

A powerful method for the non-invasive structural characterization of material is electrical impedance tomography (EIT) combined with the capabilities of impedance spectroscopy. This method determines the complex resistivity magnitude and phase images at a set of different measurement frequencies. We are particularly interested in the application of such an advanced approach for the improved characterization of soils and sediments, which only show a weak polarizability. Here, typical phase values lie between 1 and 20 mrad only, requiring instrumentation with relatively high phase resolution and accuracy. In this paper, we present a new spectral EIT data acquisition system for laboratory applications, which operates in the frequency range from 1 mHz to 45 kHz and which was developed to meet these requirements. In this context, we also present a new measurement method based on current injection swapping, which leads to significantly improved phase images, particularly for higher measurement frequencies. The system and the new measurement method are tested on a water-filled tank and column containing different 2D and 3D targets (metallic and biological objects). The tests prove a phase accuracy of 1 mrad for frequencies of up to 1 kHz and higher, resulting in a clear discrimination of the objects on the basis of the reconstructed phase images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.