Abstract

Based on Garland’s work, in this paper we construct the Eisenstein series on the adelic loop groups over a number field, induced from either a cusp form or a quasi-character which is assumed to be unramified. We compute the constant terms and prove their absolute and uniform convergence under the affine analog of Godement’s criterion. For the case of quasi-characters the resulting formula is an affine Gindikin-Karpelevich formula. Then we prove the convergence of Eisenstein series themselves in certain analogs of Siegel subsets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.