Abstract

In this paper, we define the normalized Eisenstein series ℘, e, and $\mathcal{Q}$ associated with Γ0(2), and derive three differential equations satisfied by them from some trigonometric identities. By using these three formulas, we define a differential equation depending on the weights of modular forms on Γ0(2) and then construct its modular solutions by using orthogonal polynomials and Gaussian hypergeometric series. We also construct a certain class of infinite series connected with the triangular numbers. Finally, we derive a combinatorial identity from a formula involving the triangular numbers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.