Abstract
Self-dual codes over the Galois ring GR(4,2) are investigated. Of special interest are quadratic double circulant codes. Euclidean self-dual (Type II) codes yield self-dual (Type II) ℤ4-codes by projection on a trace orthogonal basis. Hermitian self-dual codes also give self-dual ℤ4-codes by the cubic construction, as well as Eisenstein lattices by Construction A. Applying a suitable Gray map to self-dual codes over the ring gives formally self-dual 𝔽4-codes, most notably in length 12 and 24. Extremal unimodular lattices in dimension 38, 42 and the first extremal 3-modular lattice in dimension 44 are constructed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.