Abstract

We prove $R = {\mathbf T}$ theorems for certain reducible residual Galois representations. We answer in the positive a question of Gross and Lubin on whether certain Hecke algebras ${\mathbf T}$ are discrete valuation rings. In order to prove these results we determine (using the theory of Breuil modules) when two finite flat group schemes ${\mathscr G}$ and ${\mathscr H}$ of order p over an arbitrarily tamely ramified discrete valuation ring admit an extension not killed by p .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.