Abstract

We give a causal version of Eisenhart's geodesic characterization of classical mechanics. We emphasize the geometric, coordinate-independent properties needed to express Eisenhart's theorem in light of modern studies on the Bargmann structures (lightlike dimensional reduction, pp-waves). The construction of the space metric, Coriolis 1-form and scalar potential through which the theorem is formulated is shown in detail, and in particular a one-to-one correspondence between Newtonian frames and Abelian connections on suitable lightlike principal bundles is proved. The relation of Eisenhart's theorem in the lightlike case with a Fermat-type principle is pointed out. The operation of lightlike lift is introduced and the existence of minimizers for the classical action is related to the causal simplicity of Eisenhart's spacetime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call