Abstract

Various processes can occur when paints are in contact with moisture, such as ingress of water and aggressive ions into the coating. As a consequence, the microstructure and properties of the paints can be affected. The present study combines electrochemical impedance spectroscopy (EIS) and in situ atomic force microscopy (AFM) to investigate the barrier property of waterborne and solventborne coatings on mild steel, paying particular attention to the occurrences in the first 24 h after contact between the coating surface and electrolyte. The sequential in situ AFM images revealed that changes on the order of hundreds of nanometres at the coating surface have occurred shortly after the exposure to the electrolytes. EIS observations for the clear waterborne alkyd coating revealed a rise in the |Z|0.015Hz and a decrease in the coating capacitance after a few hours of exposure. Evidences that water uptake caused swelling of the coating and promoted the closure/blockage of pores were given by means of in situ AFM. The solventborne alkyd emulsion has demonstrated lower reactivity to the presence of the electrolyte and a correlation between the coating resistance and defects/pores evolution is suggested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call