Abstract
The manifold $ {}^*{g} - ESX_n $ is a generalized $ n $-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unified field tensor $ {}^*{g}^{ \lambda \nu } $ through the $ ES $-connection which is both Einstein and semi-symmetric. The purpose of the present paper is to prove a necessary and sufficient condition for a unique Einstein's connection to exist in $3$-dimensional ${}^*{g}-ESX_3$ and to display a surveyable tnesorial representation of $3$-dimensional Einstein's connection in terms of the unified field tensor, employing the powerful recurrence relations in the first class.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.