Abstract
We consider four (real or complex) dimensional hyper-Kähler metrics with a conformal symmetry K. The three-dimensional space of orbits of K is shown to have an Einstein–Weyl structure which admits a shear-free geodesics congruence for which the twist is a constant multiple of the divergence. In this case the Einstein–Weyl equations reduce down to a single second order PDE for one function. The Lax representation, Lie point symmetries, hidden symmetries and the recursion operator associated with this PDE are found, and some group invariant solutions are considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.