Abstract

In this paper, we analyse semi-linear systems of partial differential equations which are motivated by the conformal formulation of the Einstein constraint equations coupled with realistic physical fields on asymptotically Euclidean (AE) manifolds. In particular, electromagnetic fields give rise to this kind of system. In this context, under suitable conditions, we prove a general existence theorem for such systems, and, in particular, under smallness assumptions on the free parameters of the problem, we prove existence of far from CMC (near CMC) Yamabe positive (Yamabe non-positive) solutions for charged dust coupled to the Einstein equations, satisfying a trapped surface condition on the boundary. As a bypass, we prove a Helmholtz decomposition on AE manifolds with boundary, which extends and clarifies previously known results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.