Abstract

In view of the increasing importance of non-Gaussian entangled states in quantum information protocols like teleportation and violations of Bell inequalities, the steering of continuous variable non-Gaussian entangled states is investigated. The EPR steering for Gaussian states may be demonstrated through the violation of the Reid inequality involving products of the inferred variances of non-commuting observables. However, for arbitrary states the Reid inequality is not always necessary because of the higher order correlations in such states. One then needs to use the entropic steering inequality. We examine several classes of currently important non-Gaussian entangled states, such as the two-dimensional harmonic oscillator, the photon subtracted two mode squeezed vacuum, and the NOON state, in order to demonstrate the steering property of such states. A comparative study of the violation of the Bell-inequality for these states shows that the entanglement present is more easily revealed through steering compared to Bell-violation for several such states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.