Abstract
We explore Einstein–Podolsky–Rosen steering, measured by steering robustness, in the ground states of several typical models that exhibit a quantum phase transition. For the anisotropic XY model, steering robustness approaches zero around the critical point and vanishes in the ferromagnetic phase despite the fact that there exist other quantum nonlocalities, e.g. quantum entanglement. For the Heisenberg XXZ model, steering robustness exhibits some similar behavior as entanglement around the infinite-order quantum phase transition point Δ = 1, e.g. reaching its maximum. As a further example, we also consider steering robustness in the Lipkin–Meshkov–Glick collective spin model. It is then shown that steering robustness disappears at the transition point and remains at zero in the fully polarized symmetric phase, just like the behavior of entanglement and Bell nonlocality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics B: Atomic, Molecular and Optical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.