Abstract

This paper provides a framework for understanding and analyzing non-differentiable fractal manifolds. By introducing specialized mathematical concepts and equations, such as the Metric Tensor, Curvature Tensors, Analogue Arc Length, and Inner Product, it enables the study of complex patterns that exhibit self-similarity across different scales and dimensions. The Analogue Geodesic and Einstein Field Equations, among others, offer practical applications in physics, highlighting the relevance and potential of fractal geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.