Abstract

We consider the Einstein equation with first-order (semiclassical) quantum corrections. Although the quantum corrections contain up to fourth-order derivatives of the metric, the solutions which are physically relevant satisfy reduced equations which contain derivatives no higher than second order. We obtain the reduced equations for a range of stress-energy tensors. These reduced equations are suitable for a numerical solution, are expected to contain fewer numerical instabilities than the original fourth-order equations, and yield only physically relevant solutions. We give analytic and numerical solutions or reduced equations for particular examples, including Friedmann-Lema\^{\i}tre universes with a cosmological constant, a spherical body of constant density, and more general conformally flat metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.