Abstract

The eikonal approach developed previously for calculating electron-capture cross sections for bare projectiles colliding with hydrogenic targets is extended here to allow for multielectron targets. Both the impact and wave pictures are employed and their equivalence is discussed. As a first approximation, each atomic orbital is specified by the three hydrogenic quantum numbers, an effective nuclear charge Z sub t, and an energy eigenvalue in the impact picture, or ionization potential in the wave picture. The Z sub t prime appearing in the eikonal phase factor is left undetermined because of incomplete information on the many-body target. However, analytic expressions are derived for the theoretical cross sections, and numerical values are calculated for simple choices of Z sub t prime. Those results are compared with existing experimental data for C, Ne, Ar, N2, O2, and He targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.