Abstract

The current article shall contribute to understanding the classical analogue of the minimal photon sector in the Lorentz-violating Standard-Model Extension (SME). It is supposed to complement all studies performed on classical point-particle equivalents of SME fermions. The classical analogue of a photon is not a massive particle being described by a usual equation of motion, but a geometric ray underlying the eikonal equation. The first part of the paper will set up the necessary tools to understand this correspondence for interesting cases of the minimal SME photon sector. In conventional optics the eikonal equation follows from an action principle, which is demonstrated to work in most (but not all) Lorentz-violating cases as well. The integrands of the action functional correspond to Finsler structures, which establishes the connection to Finsler geometry. The second part of the article treats Lorentz-violating light rays in a weak gravitational background by implementing the principle of minimal coupling. Thereby it is shown how Lorentz violation in the photon sector can be constrained by measurements of light bending at massive bodies such as the Sun. The phenomenological studies are based on the currently running ESA mission GAIA and the planned NASA/ESA mission LATOR. The final part of the paper discusses certain aspects of explicit Lorentz violation in gravity based on the setting of Finsler geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.