Abstract
A NJL Lagrangian extended to six [1–3] and eight quark interactions [4] is applied to study temperature effects [5] (SU(3) flavor limit, massless case), and [6] (realistic massive case). The transition temperature can be considerably reduced as compared to the standard approach, in accordance with recent lattice calculations [7]. The mesonic spectra built on the spontaneously broken vacuum induced by the’ t Hooft interaction strength, as opposed to the commonly considered case driven by the four-quark coupling, undergoes a rapid crossover to the unbroken phase, with a slope and at a temperature which is regulated by the strength of the OZI violating eight-quark interactions. This strength can be adjusted in consonance with the four-quark coupling and leaves the spectra unchanged, except for the sigma meson mass, which decreases. A first order transition behavior is also a possible solution within the present approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.