Abstract

We present the discovery of eight new radio pulsars located in the Large Magellanic Cloud (LMC). Five of these pulsars were found from reprocessing the Parkes Multibeam Survey of the Magellanic Clouds, while the remaining three were from an ongoing new survey at Parkes with a high resolution data acquisition system. It is possible that these pulsars were missed in the earlier processing due to radio frequency interference, visual judgment, or the large number of candidates that must be analysed. One of these new pulsars has a dispersion measure of 273 pc cm$^{-3}$, almost twice the highest previously known value, making it possibly the most distant LMC pulsar. In addition, we present the null result of a radio pulse search of an X-ray point source located in SNR J0047.2$-$7308 in the Small Magellanic Cloud (SMC). Although no millisecond pulsars have been found, these discoveries have increased the known rotation powered pulsar population in the LMC by more than 50%. Using the current sample of LMC pulsars, we used a Bayesian analysis to constrain the number of potentially observable pulsars in the LMC to within a 95% credible interval of 57000$^{+70000}_{-30000}$. The new survey at Parkes is $\sim$20% complete and it is expected to yield at most six millisecond pulsars in the LMC and SMC. Although it is very sensitive to short period pulsars, this new survey provides only a marginal increase in sensitivity to long periods. The limiting luminosity for this survey is 125 mJy kpc$^2$ for the LMC which covers the upper 10% of all known radio pulsars. The luminosity function for normal pulsars in the LMC is consistent with their counterparts in the Galactic disk. The maximum 1400 MHz radio luminosity for LMC pulsars is $\sim 1000$ mJy kpc$^2$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.