Abstract
Uncertainties remain regarding the nature and durability of the humoral immune response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This study investigated immunoglobulin G response and neutralizing activity to evaluate the mean antibody concentrations and response duration induced by each vaccination regimen in a French adult population. A study including blood sampling and questionnaires was carried out from November 2020 to July 2021 with three separate follow-up phases. Spike proteins and neutralizing antibodies were quantified using ELISA and a virus-neutralization test. Overall, 295 participants were included. Seroprevalences were 11.5% (n = 34), 10.5% (n = 31), and 68.1% (n = 201) in phases 1, 2, and 3, respectively. Importantly, 5.8% (n = 17) of participants lost their natural antibodies. Antibody response of participants with only a prior infection was 88.2 BAU/mL, significantly lower than those vaccinated, which was 1909.3 BAU/mL (p = 0.04). Moreover, the antibody response of vaccinated participants with a prior infection was higher (3593.8 BAU/mL) than those vaccinated without prior infection (3402.9 BAU/mL) (p = 0.78). Vaccinated participants with or without prior infection had a higher seroneutralization rate (91.0%) than those unvaccinated with prior infection (65.0%). These results demonstrated that single infection does not confer effective protection against SARS-CoV-2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International journal of environmental research and public health
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.