Abstract

Wax produced during Fischer-Tropsch synthesis (FTS) has no sulfur, nitrogen and aromatic contents and could be an attractive material to produce high quality transportation fuels by means of fluid catalytic cracking reaction. The kinetic modeling and riser reactor simulation are urgently needed. However, most of the current models in this field are based on crude oil feedstock which can not rigorously reflect the features of FTS wax catalytic cracking, especially the aromatization of the cracked light olefins for aromatic gasoline components. The effects of operating conditions on the catalytic cracking performance of FTS wax are investigated in a riser reactor with an industrial β-zeolite based catalyst. An eight-lumped (including paraffins, olefins, naphthenes and aromatics in gasoline, liquefied petroleum gas, dry gas, FTS wax and coke) kinetic model is developed for product selectivity description and riser reactor simulation in FTS wax catalytic cracking. The theoretical prediction is in good agreement with the experimental data. The modeling work is very helpful in reactor scale-up and operating condition optimization of the process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.