Abstract

This article presents an eight-element tri-band Multiple Input Multiple Output (MIMO) antenna system for future handheld devices. The suggested antenna system consists of a main and sideboards. The feed lines are connected on the main board while the antennas are placed on sideboards, two on each side separately. The total dimension of the main board is <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$150\times 75$ </tex-math></inline-formula> mm2, and the sideboard is <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$150\times 7$ </tex-math></inline-formula> mm2. The antenna resonates at three distinct 5G allocated bands of 3.1-3.7 GHz, 4.47-4.91 GHz, and 5.5-6.0 GHz with impedance bandwidths of 600 MHz, 440 MHz, and 450 MHz, respectively. The antenna system provides pattern and spatial diversity characteristics with radiation and total efficiency of 78% and 62% and peak gain of 5.8 dBi. The MIMO system is fabricated, and the measured results are found to be in good agreement with the simulations. The isolation among radiating elements in all resonating bands is found to be >16 dB. The vital MIMO performance parameters such as envelope correlation coefficient (ECC) is less than 0.2 for any two antenna array meeting the required standard of less than 0.5 alongside the mean effective gain or MEG ratio of any two antenna meeting the required standard of less than 3 dB for power balance and optimal diversity. The Channel Capacity (CC) is found to be 41.1 bps/Hz, approximately 3 times that of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$2\times $ </tex-math></inline-formula> 2 MIMO operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.