Abstract

A theoretical interpretation of the observed periodicity of large-scale (∼128 Mpc) correlations of galaxies is proposed as due to eigenvibrations of the closed expanding universe. Eigensolutions of the equations of motion for a scalar field in an inflationary model allow one to compute the energy density, interpreted as matter density. Isotropic eigensolution give rise to a matter density distribution having a periodic structure centered at the north pole of the closed Robertson-Walker universe represented by S3/Z2. It is able to reproduce well the striking periodicity of the observational data, in the galactic north-south directions. The dipole and quadrupole eigensolutions and the location of the co-moving observer in a point of S3/Z2 different from the center of the vibrational structure would imply, in a theoretically well predictable way, a decrease of the observed periodicity in some other directions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call