Abstract

In this paper, we present the automated diagnostic systems for time-varying biomedical signals classification and determine their accuracies. The combined neural network (CNN) and mixture of experts (ME) were tested and benchmarked for their performance on the classification of the studied time-varying biomedical signals (ophthalmic arterial Doppler signals and electroencephalogram signals). Decision making was performed in two stages: feature extraction by eigenvector methods and classification using the classifiers trained on the extracted features. The purpose was to determine an optimum classification scheme for the problem and also to infer clues about the extracted features. Our research demonstrated that the power levels of power spectral density (PSD) estimations obtained by the eigenvector methods are the valuable features which are representing the time-varying biomedical signals and the CNN and ME trained on these features achieved high classification accuracies

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.