Abstract

A common challenge faced in quantum physics is finding the extremal eigenvalues and eigenvectors of a Hamiltonian matrix in a vector space so large that linear algebra operations on general vectors are not possible. There are numerous efficient methods developed for this task, but they generally fail when some control parameter in the Hamiltonian matrix exceeds some threshold value. In this Letter we present a new technique called eigenvector continuation that can extend the reach of these methods. The key insight is that while an eigenvector resides in a linear space with enormous dimensions, the eigenvector trajectory generated by smooth changes of the Hamiltonian matrix is well approximated by a very low-dimensional manifold. We prove this statement using analytic function theory and propose an algorithm to solve for the extremal eigenvectors. We benchmark the method using several examples from quantum many-body theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.