Abstract

With the budding interests of structural and functional network characteristics as potential parameters for abnormal brains, an essential and thus simpler representation and evaluations have become necessary. Eigenvector centrality measure of functional magnetic resonance imaging (fMRI) offer region wise network representations through fMRI diagnostic maps. The article investigates the suitability of network node centrality values to discriminate ASD subject groups compared to typically developing controls following a boxplot formalism and a classification and regression tree model. Region wise differences between normal and ASD subjects primarily belong to the frontoparietal, limbic, ventral attention, default mode and visual networks. The reduced number of regions-of-interests (ROI) clearly suggests the benefit of automated supervised machine learning algorithm over the manual classification method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.