Abstract

The spectral structure of two parameter unbounded operator pencils of waveguide type is studied. Theorems on discreteness of the spectrum for a fixed parameter are proved. Variational principles for real eigenvalues in some parts of the root zones are established. In the case of n = 1 (quadratic pencils) domains containing the spectrum are described (see Fig. 1–3). Conditions in the definition of the pencils of waveguide type arise naturally from physical problems and each of them has a physical meaning. In particular a connection between the energetic stability condition and a perturbation problem for the coefficients is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.