Abstract
We consider the boundary value problem for eigenvalues of the negative Laplace operator in a disk with the Neumann boundary condition on the circle except for finitely many (more than 1) small arcs, where the Dirichlet boundary condition is imposed, with lengths tending to zero. We construct complete asymptotics expansions of egenvalues with respect to the parameter (the arc length) converging to a double eigenvalue to the limit Neumann problem, in the critical case, where one of the eigenfunctions of the limit problem vanishes at all contraction points for small arcs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.