Abstract

AbstractFrom a knowledge of the eigenvalue spectrum of the Laplacian on a domain, one may extract information on the geometry and boundary conditions by analysing the asymptotic expansion of a spectral function. Explicit calculations are performed for isosceles right-angle triangles with Dirichlet or Neumann boundary conditions, yielding in particular the corner angle terms. In three dimensions, right prisms are dealt with, including the solid vertex terms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.