Abstract
The paper is concerned with finite Hermitian Toeplitz matrices whose entries in the first row grow like a polynomial. Such matrices cannot be viewed as truncations of an infinite Toeplitz matrix which is generated by an integrable function or a nice measure. The main results describe the first-order asymptotics of the extreme eigenvalues as the matrix dimension goes to infinity and also deliver unexpected barriers for the eigenvalues. One purpose of the paper is to popularize once more that questions on the eigenvalues of matrices can be answered in a very elegant way by passing to integral operators. This idea was introduced by Harold Widom about fifty years ago. In this way one can also give an alternative proof to results by William F. Trench on Hermitian Toeplitz matrices with increasing entries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.