Abstract

In the hydrogen atom, the eigenvalues of energy in j (l + 1/2, l ‐ 1/2) electron state cannot be correctly evaluated from the nonrelativistic Schrödinger equation. In order to express the relativistic properties of the wave equation for a particle with 1/2 spin, the Schrödinger equation is relativistically modified. The modified Schrödinger equation is solved for consistency with the eigenvalues of electron's energy derived from the Dirac equation. Based on the consistency of their eigenvalues, the different electron state is expressed. The microwave emission (e.g., 21 cm radio wave) by the hydrogen atom was thus predicted from this state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.