Abstract

The eigenvalues for the Brownian motion in a periodic potential with an additive constant force are investigated in the low friction limit. First the Fokker-Planck equation for the distribution function in velocity and position space is transformed to energy and position coordinates. By a proper averaging process over the position coordinate a differential equation for the distribution function depending on the energy only is obtained. Next the eigenvalues and eigenfunctions are calculated from this equation by a Runge-Kutta method. Finally the problem is formulated in terms of an integral equation from which the lowest non-zero eigenvalue is obtained analytically in the bistability region in the zero temperature limit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.