Abstract
In this paper we study the joint distributional convergence of the largest eigenvalues of the sample covariance matrix of a p-dimensional time series with iid entries when p converges to infinity together with the sample size n. We consider only heavy-tailed time series in the sense that the entries satisfy some regular variation condition which ensures that their fourth moment is infinite. In this case, Soshnikov (2004, 2006) and Auffinger et al. (2009) proved the weak convergence of the point processes of the normalized eigenvalues of the sample covariance matrix towards an inhomogeneous Poisson process which implies in turn that the largest eigenvalue converges in distribution to a Fréchet distributed random variable. They proved these results under the assumption that p and n are proportional to each other. In this paper we show that the aforementioned results remain valid if p grows at any polynomial rate. The proofs are different from those in Auffinger et al. (2009) and Soshnikov (2004, 2006); we employ large deviation techniques to achieve them. The proofs reveal that only the diagonal of the sample covariance matrix is relevant for the asymptotic behavior of the largest eigenvalues and the corresponding eigenvectors which are close to the canonical basis vectors. We also discuss extensions of the results to sample autocovariance matrices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.