Abstract

The eigenstructures of common covariance matrices are identified for the general case of M closely spaced signals. It is shown that the largest signal-space eigenvalue is relatively insensitive to signal separation. By contrast, the ith largest eigenvalue is proportional to delta omega /sup 2(i-1)/ or delta omega /sup 4(i-1)/, where delta omega is a measure of signal separation. Therefore, matrix conditioning degrades rapidly as signal separation is reduced. It is also shown that the limiting eigenvectors have remarkably simple structures. The results are very general, and apply to planar far-field direction-finding problems involving almost arbitrary scenarios, and also to time-series analysis of sinusoids, exponentials, and other signals. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.