Abstract
The localization phenomenon for periodic unitary transition operators on a Hilbert space consisting of square summable functions on an integer lattice with values in a finite-dimensional Hilbert space, which is a generalization of the discrete-time quantum walks with constant coin matrices, is discussed. It is proved that a periodic unitary transition operator has an eigenvalue if and only if the corresponding unitary matrix-valued function on a torus has an eigenvalue which does not depend on the points on the torus. It is also proved that the continuous spectrum of a periodic unitary transition operator is absolutely continuous. As a result, it is shown that the localization happens if and only if there exists an eigenvalue, and when there exists only one eigenvalue, the long-time limit of transition probabilities coincides with the point-wise norm of the projection of the initial state to the eigenspace. The results can be applied to certain unitary operators on a Hilbert space on a covering graph, called a topological crystal, over a finite graph. An analytic perturbation theory for matrices in several complex variables is employed to show the result about absolute continuity for periodic unitary transition operators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Infinite Dimensional Analysis, Quantum Probability and Related Topics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.