Abstract
The distribution of the ratios of consecutive eigenvalue spacings of random matrices has emerged as an important tool to study spectral properties of many-body systems. This article numerically investigates the eigenvalue ratios distribution of various model networks, namely, small-world, Erdős-Rényi random, and (dis)assortative random having a diagonal disorder in the corresponding adjacency matrices. Without any diagonal disorder, the eigenvalues ratio distribution of these model networks depict Gaussian orthogonal ensemble (GOE) statistics. Upon adding diagonal disorder, there exists a gradual transition from the GOE to Poisson statistics depending upon the strength of the disorder. The critical disorder (w_{c}) required to procure the Poisson statistics increases with the randomness in the network architecture. We relate w_{c} with the time taken by maximum entropy random walker to reach the steady state. These analyses will be helpful to understand the role of eigenvalues other than the principal one for various network dynamics such as transient behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.