Abstract
Let G be a connected triangle-free graph of order n>5 with μ∉{−1,0} as an eigenvalue of multiplicity k>1. We show that if d is the maximum degree in G then k≤n−d−1; moreover, if k=n−d−1 then either (a) G is non-bipartite and k≤(μ2+3μ+1)(μ2+2μ−1), with equality only if G is strongly regular, or (b) G is bipartite and k≤d−1, with equality only if G is a bipolar cone. In each case we discuss the extremal graphs that arise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.