Abstract

It is shown that the Bloch function, as an element of the Hilbert space spanned by Bloch-periodic planes waves, can be also represented as an on-shell superposition of Bloch-periodic orbitals which, however, exist in a distribution sense. By using this result and the multipole expansion of the Bloch function at the origin, it is further shown that the integral eigenvalue equation of the Bloch function for a general periodic potential is equivalent (both necessary and sufficient) to an algebraic system of homogeneous linear equations for the coefficients of the multipole expansion of the Bloch function at the origin, akin to the much simpler case of a finite-range potential. In contrast to the Korringa-Kohn-Rostoker (KKR) equation, the contribution of the cell potential (whether of the muffin-tin or general form) introduces a supplementary structure dependence. However, the separation between structure and potential, typical for the KKR equation, can be restored by introducing various approximations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.