Abstract

We introduce a general method for transforming the equations of motion following from a Das-Jevicki-Sakita Hamiltonian, with boundary conditions, into a boundary value problem in one-dimensional quantum mechanics. For the particular case of a one-dimensional chain of interacting N∗ x N hermitian matrices, the corresponding large N boundary value problem is mapped into a linear Fredholm equation with Hilbert-Schmidt-type kernel. The equivalence of this kernel, in special cases, to a second-order differential operator allows us recover all previously known explicit solutions for the matrix eigenvalues. In the general case, the distribution of eigenvalues is formally derived through a series of saddle-point approximations. The critical behaviour of the system, including a previously observed Kosterlitz-Thouless transition, is interpreted in terms of the stationary points. In particular we show that a previously conjectured infinite series of sub-leading critical points are due to expansion about unstable stationary points and consequently not realized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.