Abstract
Motivated by the recent demonstration of its use as a tool for the detection and characterization of phase-shape correlations in multivariate time series, we show that eigenvalue decomposition can also be applied to a matrix of indices of bivariate phase synchronization strength. The resulting method is able to identify clusters of synchronized oscillators, and to quantify their strength as well as the degree of involvement of an oscillator in a cluster. Since for the case of a single cluster the method gives similar results as our previous approach, it can be seen as a generalized Synchronization Cluster Analysis, extending its field of application to more complex situations. The performance of the method is tested by applying it to simulation data.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.