Abstract
We prove two bounds showing that if the eigenvalues of a matrix are clustered in a region of the complex plane then the corresponding discrete-time linear system requires significant energy to control. A curious feature of one of our bounds is that the dependence on the region is via its logarithmic capacity, which is a measure of how well a unit of mass may be spread out over the region to minimize a logarithmic potential.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.