Abstract
We study bounds on the Riesz means of the mixed Steklov–Neumann and Steklov–Dirichlet eigenvalue problem on a bounded domain [Formula: see text] in [Formula: see text]. The Steklov–Neumann eigenvalue problem is also called the sloshing problem. We obtain two-term asymptotically sharp lower bounds on the Riesz means of the sloshing problem and also provide an asymptotically sharp upper bound for the Riesz means of mixed Steklov–Dirichlet problem. The proof of our results for the sloshing problem uses the average variational principle and monotonicity of sloshing eigenvalues. In the case of Steklov–Dirichlet eigenvalue problem, the proof is based on a well-known bound on the Riesz means of the Dirichlet fractional Laplacian, and an inequality between the Dirichlet and Navier fractional Laplacian. The two-term asymptotic results for the Riesz means of mixed Steklov eigenvalue problems are discussed in the Appendix which in particular show the asymptotic sharpness of the bounds we obtain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.