Abstract
This paper addresses the global consensus of nonlinear multiagent systems with asymmetrically coupled identical agents. By employing a Lyapunov function and graph theory, a sufficient condition is presented for the global exponential consensus of the multiagent system. The analytical result shows that, for a weakly connected communication graph, the algebraic connectivity of a redefined symmetric matrix associated with the directed graph is used to evaluate the global consensus of the multiagent system with nonlinear dynamics under the common linear consensus protocol. The presented condition is quite simple and easily verified, which can be effectively used to design consensus protocols of various weighted and directed communications. A numerical simulation is also given to show the effectiveness of the analytical result.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.