Abstract

A perturbation decaying to 0 at 1 and not too irregular at 0 introduces at most a discrete set of eigenvalues into the spectral gaps of a one-dimensional Dirac operator on the half-line. We show that the number of these eigenvalues in a compact subset of a gap in the essential spectrum is given by a quasi-semiclassical asymptotic formula in the slow-decay limit, which for power-decaying perturbations is equivalent to the large-coupling limit. This asymptotic behaviour elucidates the origin of the dense point spectrum observed in spherically symmetric, radially periodic three-dimensional Dirac operators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.