Abstract

This paper considers the problem of finding the directions of narrowband signals using a time-varying array whose elements move during the observation interval in an arbitrary but known way. We derive two eigenstructure-based algorithms for this problem, which are modifications of techniques developed originally for time-invariant arrays. The first uses array interpolation, and the second uses focusing matrices. Like other eigenstructure-based methods, these algorithms require a modest amount of computations in comparison with the maximum likelihood (ML) estimator. The performance of the algorithms is evaluated by Monte-Carlo simulations, and is compared with the Cramer Rao Bound (CRB). Although both techniques were successful for wideband array processing with time-invariant arrays, we found that only the interpolated array algorithm is useful for direction finding (DF) with time-varying arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.